Treehouse Software – 40 Years and Still Moving Forward (Part 1)

by Joseph Brady, Director of Business Development and Cloud Alliance Leader at Treehouse Software, Inc. 

__TSI_LOGO_40th_Transp

Introduction

Many readers know that Treehouse Software has been around since 1983, serving enterprises worldwide with industry-leading software products and outstanding technical support. However, this blog series will dig a little deeper into Treehouse Software’s origins and explore how founder and president, George Szakach blazed a trail from being a systems programmer in the early 60s, to creating and growing his own software company from the early 80s up to the present.

The beginnings… 1960’s.  Moon Landing, Flower Power, the Righteous Brothers, and Punched Cards

George is a Vietnam-era veteran and started working with mainframes in 1960 while in the Army. 

After programming school in Fort Monmouth, NJ, George was assigned to Fort Huachuca, Arizona where he wrote army related applications on the IBM 709.

Before leaving the army in 1963, George had many job offers.  Three years of programming experience was unheard-of back then, so his skillset was very valuable.  He was even offered a job by the president of Informatics, working in Houston at the NASA Johnson Space Center to “put a man on the moon.”  He declined.

Throughout the rest of the 60s, George worked at Burroughs, Univac, and Leasco. During the 70s through 1982, George worked for Ocean Data Systems, Data General, Optical Recognition Systems, Software AG (his longest stint – 7 years), and Superior Oil.

Punched card…

01_2023_Treehouse_Chronology_Blog_Punched_Card

IBM 709 Computer System…

IBM709

George’s archeological finds from his time at Univac…

____01_Chron_UNIVAC_Card

With all of this foundational mainframe experience combined with his skills honed at Software AG, the seeds were planted for George’s future: take those roots, move to the trees, and build a house… 

Coming soon… Part 2: Treehouse Software’s first generations.    


__TSI_LOGO_40th_Transp

About Treehouse Software

Since 1983, Treehouse Software has been serving enterprises worldwide with industry-leading mainframe software products and outstanding technical support. Today, Treehouse Software is a global leader in providing data replication, and integration solutions for the most complex and demanding heterogeneous environments, as well as feature-rich, accelerated-ROI offerings for information delivery, and application modernization.

Contact Treehouse Software

Treehouse Software Salutes Franco Harris

by Joseph Brady, Director of Business Development and Cloud Alliance Leader at Treehouse Software, Inc. 

With the recent passing of Pittsburgh Steelers great running back and Pro Football Hall of Famer, Franco Harris, we would like to revisit April of 1993, when Treehouse Software held an international consultant’s symposium. The symposium brought together attendees and speakers from many consulting and technology companies, and schools from around the world. Since Treehouse Software is located in the greater Pittsburgh area, company president George Szakach was acquainted with Franco and invited him to deliver a fascinating and entertaining address, where he spoke about his career, several business ventures he was pursuing, as well as his budding interest in computer technology.

____01_Chron_Franco

Franco Harris at Treehouse Software’s Consultant’s Symposium (April 1993)

A few years ago, George reminded Franco about his visit to Treehouse back in 1993. He remembered and they shared some laughs and memories. 

We would also like to mention Franco’s well-known sense of community and accessibility in Pittsburgh. Many staff members have met Franco over the years and have fond memories of his friendliness and willingness to spend time engaging in conversations. Those who come in to the Pittsburgh International airpot can see a sculpture depicting Franco’s famous “Immaculate Reception” from 1972.  Thousands of people, especially recently, have selfies taken with the sculpture. Franco will be missed by his many friends and the community.

____01_Chron_Franco_Airport_Sculpt02

Franco Harris sculpture at Pittsburgh International Airport.


__001_TSI_LOGO

About Treehouse Software

Since 1982, Treehouse Software has been serving enterprises worldwide with industry-leading mainframe software products and outstanding technical support. Today, Treehouse Software is a global leader in providing data replication, and integration solutions for the most complex and demanding heterogeneous environments, as well as feature-rich, accelerated-ROI offerings for information delivery, and application modernization.

Contact Treehouse Software

Enterprise Mainframe Change Data Capture (CDC) to Apache Kafka with tcVISION and Confluent

by Joseph Brady, Director of Business Development and Cloud Alliance Leader at Treehouse Software, Inc. and Ram Dhakne, Solutions Engineer at Confluent

___Mainframe_To_Kafka_Confluent

This blog focuses on using Treehouse Software’s tcVISION to replicate data in real time between mainframes and Confluent, allowing for new use cases and truly setting data in motion.

Why mainframe modernization? Benefits and use cases

Mainframe data stores often hold large amounts of complex and critical data in proprietary legacy formats, making this data difficult to extract and incompatible with modern databases, data types, and data tools.

Enterprises are looking to take advantage of the latest cloud services, such as analytics, artificial intelligence (AI) and machine learning, scalable storage, security, high availability, etc., or move data to a variety of newer databases. Additionally, many customers want to modernize their application on a cloud or open systems platform without disrupting the existing critical work on the legacy system.

How tcVISION syncs legacy data for the cloud

tcVISION is a data replication software product that performs real-time synchronization of mainframe data sources and cloud and open systems, allowing critical mainframe data to be consumed by a variety of leading cloud services.

tcVISION supports many mainframe data sources for both online and offline scenarios. Data can be replicated from IBM Db2 z/OS, Db2 z/VSE, VSAM, IMS/DB, CA IDMS, CA Datacom, or Software AG ADABAS. tcVISION can replicate data to many targets including Confluent Platform, Apache Kafka®, AWS, Google Cloud, Microsoft Azure, PostgreSQL, Snowflake, etc. To learn more, see the complete list of supported tcVISION sources and targets.

tcvision-mainframe-to-confluent-cloud-data-replication-1536x1042

tcVISION focuses on CDC (change data capture) when transferring information between mainframe data sources and cloud and open systems databases and applications. Through innovative technology, changes occurring in any mainframe application data are tracked and captured, and then published to a variety of cloud and open systems targets.

tcVISION stores metadata in a relational database and the tcVISION manager components are administered by the tcVISION control board, a Windows GUI interface, which can be installed on premises or in the cloud. This allows tcVISION users to create metadata, create and control replication scripts, and control database interactions. tcVISION’s architecture is designed to minimize mainframe resource utilization.

Using the tcVISION control board, the most complex transformations can be specified, and it facilitates the mapping of the mainframe copybooks, redefines, data dictionaries, data catalogs, codepages, data type mapping, and more via the user-friendly interface. The repository editor allows users to control data transformations.

What is Confluent?

Confluent Cloud is a real-time data in motion platform that can be deployed in any public cloud, in any region of your choice. It comes with an SLA and uptime of 99.95%, and fully managed components like ZooKeeper, Kafka brokers, 120+ Kafka connectors, Schema Registry, and ksqlDB so you can leverage it on any cloud without having to worry about how it runs and scales.

Kafka Connect, Connect API, connectors, and tcVISION IBM Db2 connector

Kafka comes with three core APIs:

  • Kafka producer/Consumer API
  • Connect API
  • KStreams API

Kafka Connect is a tool for scalably and reliably streaming data between Kafka and other data systems. It makes it simple to quickly define connectors that move large data sets into and out of Kafka. Kafka Connect can ingest entire databases or collect metrics from all your application servers into Kafka topics, making the data available for stream processing with low latency. Kafka Connect connects APIs under the hood with fully managed connector support in Confluent Cloud.

Step-by-step guide on how to use tcVISION and Confluent

This example discusses the integration of tcVISION replication of data from Db2 to Confluent Cloud.

Set up tcVISION access to Confluent

Create an account with Confluent to make a Confluent user ID/password; the user ID is generally your email address. To sign on to Confluent, go to the Confluent Cloud login and enter your user ID:

Confluent Cloud welcome page

Then, enter your password:

Enter your password

When you log in, you’ll be in a Confluent environment called “default”:

Confluent environment called “default”

A Confluent environment is a type of container that holds clusters which in turn hold topics. If you are familiar with messaging systems, Confluent/Kafka will seem familiar. A cluster will need to be created to serve as a target for the data produced by tcVISION. The first attribute to be selected is the type of cluster. Confluent offers three types: Basic, Standard, and Dedicated. For the purposes of this demonstration, Basic will be used. A Basic cluster does not incur charges for simply existing, but does for data transmission and data storage.

Select "Basic cluster" and begin configuration

Select Begin configuration.

Select a cloud provider

Here, a cloud provider can be chosen—AWS, Google Cloud, or Microsoft Azure. For this example, AWS is used. Select Continue and the characteristics of the new cluster are displayed, which we’ve named “tcVISION_cluster_0”:

Cluster characteristics

After entering your payment information (not shown), you can click on the cluster name to launch the cluster overview.

Cluster overview

In order to use Confluent with tcVISION, the user must provide tcVISION with information about the cluster they intend to use. Specifically, the user must supply the hostname and port of the Confluent AWS virtual machine, and the credentials needed to access the cluster.

Confluent refers to the hostname and port as a bootstrap server. There can be multiple bootstrap servers for the purpose of load balancing, but a single server is used for this demonstration.

To find bootstrap server information, click Cluster Settings on the left-hand side:

Cluster settings

The bootstrap server will be listed under “Identification,” and includes both the AWS hostname and the port.

Credentials in Confluent consist of an API Key and an API Secret. These are generated for the cluster and take the place of the Confluent user ID and password used to log in. To generate a key/secret pair, click API Access on the left:

API Keys page

Followed by Create Key:

Select API Key scope

For this example, we use “Global Access” here, so click Next:

API Key and secret

Pay particular attention to the tip about saving the key and secret somewhere safe, because once this panel is exited, there is no way to display the secret again. A descriptive string for this key/secret pair can be filled in. The key or secret text to be copied can be selected, or use the convenient icons at the end of the field to copy. Once the key/secret has been safely stored, check the box that says it has been done, and click Save. You will return to the “API Keys” panel, and the key is now displayed:

API Key displayed

Set up Confluent and define the topic

The last thing to do is define a topic within the cluster. Confluent producers have the capability to define their own topics within a cluster, but this capability can be disabled by a Confluent configuration and is disabled in the configuration used here.

Go back to the cluster Overview:

Cluster Overview

On the left sidebar, click Topics:

Topics

Then Create Topic:

Create a topic

The topic name is filled in (“CONFLUENT_CLOUD_TOPIC1”), overriding the number of partitions from 6 to 1, since that is what the Confluent demo uses. Click Create with defaults:

Cloud topic

A topic is now available, which can be populated with Db2 data.

Set up tcVISION and run a bulk load of Db2 data

tcVISION’s control board is a Windows graphical user interface (GUI) that allows users to configure the replication stream between various database platforms, including the IBM mainframe and Confluent. Using the control board and built-in wizards, users can define the metadata and the mappings between the mainframe and target.

The following sequence of screens shows the steps required to create the tcVISION metadata and scripts for replicating mainframe Db2 z/OS data to Confluent.

Access the tcVISION control board:

tcVISION control board

Log on to Db2 z/OS:

Db2 z/OS

Create metadata that is specific to the input (Db2) and output (Kafka) and the replication definition. In this example, the Db2 table is mapped to the Confluent Cloud Kafka topic using JSON:

Import of structure definitions

The tcVISION metadata wizard asks for the information required for the replication of the mainframe database to Confluent Cloud. For Db2 z/OS, it asks for the mainframe Db2 subsystem:

Source type for structure definition import

Db2 subsystem

tcVISION presents the tables contained in the Db2 z/OS catalog on the mainframe. Select the schemas and associated tables for replication:

Select the schemas and associated tables for replication

Once the required tcVISION wizard-based screens are completed, the tool automatically defines the mappings between the source and target. tcVISION’s metadata import wizard creates a default mapping that handles data type conversion issues, such as EBCDIC to ASCII, Endianness conversion, codepages, redefines data types, and more:

Default mapping

tcVISION data scripts are created through wizards. Data scripts control the replication of data from the source (Db2 z/OS) to the target (Confluent Cloud Kafka JSON). tcVISION bulk load scripts are a type of data script that performs the initial load of the Kafka topic. The following script shows data being accessed directly from the mainframe Db2 z/OS database. Another alternative to reduce MIPS consumption is to read the data from a Db2 image copy.

Data script

Bulk load script running:

Bulk load script running

After execution of the bulk load script, replication statistics of the Db2 bulk load into the Confluent Cloud Kafka topic can be viewed:

Replication statistics of the Db2 bulk load

Now that the topic has been loaded with data from Db2, it can be displayed in Confluent. To do this, navigate to the topics panel again:

Notice that there are now statistics indicating that the tcVISION producer uploaded some data to the topic. On the horizontal menu, switch from “Overview” to “Messages” to display the messages (data records) that the tcVISION bulk load placed in the topic. The display can be filtered in various ways, but for this example, the default is used: “Jump to Offset,” which says “start displaying sequentially from this offset.” Here, an offset of 0 (start at the beginning) is specified, since we just want to verify that the Db2 data uploaded by tcVISION was actually delivered:

Messages (data records) from tcVISION bulk load

Run a change script in tcVISION to show the changes in Confluent

To capture ongoing changes to Db2 in real time, a Db2 z/OS CDC replication script is created.

This script captures the changes on the Db2 z/OS side and applies them into the repository where the output target is Confluent Cloud topic.

Replication script

Replication script

Target database Confluent Cloud topic

The CDC replication is initiated from the tcVISION control board. The tcVISION control board shows a graphical representation of the replication:

Graphical representation of the replication

The CDC replication is now actively capturing and replicating data changes whenever they occur on the Db2 z/OS side. You can test it by making a change in the Db2 z/OS table:

 
********************************* Top of Data **********************************
---------+---------+---------+---------+---------+---------+---------+---------+
UPDATE SXE1.TVKFKATB                                                    00010004
SET DEPT = '696969'                                                     00040029
WHERE PERS_ID = 5;                                                      00050004
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE615I NUMBER OF ROWS AFFECTED IS 1                                           
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0                       
---------+---------+---------+---------+---------+---------+---------+---------+
--COMMIT;                                                               00060019
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE617I COMMIT PERFORMED, SQLCODE IS 0                                         
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0                       
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72                  
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 1                                
DSNE621I NUMBER OF INPUT RECORDS READ IS 4                                      
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 17                                 
******************************** Bottom of Data ********************************

This change is processed and replicated by tcVISION. The tcVISION control board shows the statistics highlighting that one update was performed:

Display of extended statistics

Checking in Confluent, the Db2 z/OS change has successfully been propagated to the Confluent Cloud topic:

Db2 z/OS change successfully propagated to Confluent Cloud topic

tcVISION and Confluent are better together

With tcVISION’s groundbreaking Db2 CDC connector and Confluent’s ability to serve as the multi-tenant data hub, this combination creates a very powerful solution to aggregate data from multiple sources and have data published into various Kafka topics. Sourcing events from any kind of Db2 via a connector into Confluent will set data in motion for the entire organization. Simplicity and agility are key elements of the tcVISION and Confluent “better together” story.


__001_TSI_LOGO

Video: tcVISION Demonstration…

In this video, we show a tcVISION overview, then a demonstration of replication of mainframe data on AWS RDS for PostgreSQL:

Contact Treehouse Software for a tcVISION Demo Today!

No matter where you want your mainframe data to go – the Cloud, open systems, or any LUW target – tcVISION from Treehouse Software is your answer.

Just fill out the Treehouse Software tcVISION Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.

How to Replicate Mainframe Data on Azure SQL with tcVISION from Treehouse Software

by Joseph Brady, Director of Business Development and Cloud Alliance Leader at Treehouse Software, Inc.

tcVISION allows enterprise customers to replicate data between mainframe, Cloud, or Hybrid Cloud while maintaining their legacy environments.

We are currently working with a government site to architect bi-directional mainframe data replication on Azure SQL.  One of the customer’s requirements is for tcVISION to provide real-time data synchronization of changes on either platform reflected on the other platform (e.g., a change to an Azure SQL table is reflected back on mainframe). This way, the customer can modernize their application on the Azure Cloud without disrupting the existing critical work on their legacy system.

tcVISION_Azure_Architecture

VIDEO: See how tcVISION easily connects mainframe systems to Azure SQL…

The tcVISION solution focuses on changed data capture (CDC) when transferring information between mainframe data sources and modern databases and applications. Through an innovative technology, changes occurring in any mainframe application data are tracked and captured, and then published to a variety of targets.

Azure SQL is a supported target in tcVISION, and in this instructional video, tcVISION is shown synchronizing data in real-time between Db2 on z/OS and Azure SQL:


__tsi_logo_400x200

Contact Treehouse Software Today…

No matter where you want your mainframe data to go – the Cloud, Open Systems, or any LUW target – tcVISION from Treehouse Software is your answer.

Just fill out the Treehouse Software Product Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.

Video: Mainframe-to-AWS Data Replication with tcVISION from Treehouse Software

by Joseph Brady, Director of Business Development and Cloud Alliance Leader at Treehouse Software, Inc.

___Video_Mainframe_To_Cloud

Treehouse Software was recently invited by AWS mainframe modernization technical teams to do a presentation and demonstration of tcVISION, our innovative Mainframe-to-Cloud data replication software product.

In this video, Chris Rudolph, Treehouse Software’s tcVISION Product Manager shows an overview of the product, then demonstrates replication of mainframe data on AWS RDS for PostgreSQL:


__tsi_logo_400x200

Contact Treehouse Software Today for a tcVISION Demonstration…

No matter where you want your mainframe data to go – the Cloud, Open Systems, or any LUW target – tcVISION from Treehouse Software is your answer.

If interested in more information, please contact customer sales at +1.724.759.7070, email us at sales@treehouse.com, or fill out the Treehouse Software Product Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.

Mainframe VSAM Change Data Capture (CDC) to Cloud and Open Systems with tcVISION from Treehouse Software

by Joseph Brady, Director of Business Development and AWS and Cloud Alliance Leader at Treehouse Software, Inc.

tcVISION_Mainframe_VSAM

Treehouse Software is the worldwide distributor of tcVISION, the innovative software product that allows immediate data replication between an impressive array of Mainframe sources and Cloud and Open Systems targets. This blog focuses on tcVISION‘s support of VSAM mainframe data sources (batch and CICS on z/OS, and CICS on z/OS and z/VSE).

tcVISION performs VSAM Change Data Capture (CDC) either via its own “DBMS-Extensions”, or via IBM’s CICS VR product. tcVISION has separate DBMS-Extensions to capture changes from CICS (using the CICS External Interface) and batch (via a JCL wrapper). All captured changes, regardless of whether they are performed by tcVISION or CICS VR are written to the z/OS Logstream on the mainframe. tcVISION then reads the Logstream and transfers the transactions to a tcVISION server running in the Cloud or on-prem, which is responsible for queueing, transforming, and applying the captured changes to the specified target.

Additionally, when planning VSAM CDC there are a number of operational items to consider, such as volume of batch transactions, data changes that occur during periods of time while the VSAM file is offline, etc.

In this instructional video, tcVISION is shown capturing changes from VSAM on z/OS and writing them to SQL Server on Windows:

 


__tsi_logo_400x200

Contact Treehouse Software Today for a tcVISION Demonstration…

No matter where you want your mainframe data to go – the Cloud, Open Systems, or any LUW target – tcVISION from Treehouse Software is your answer.

Just fill out the Treehouse Software Product Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.

How to Replicate Mainframe Data to a Big Data Environment via Kafka with tcVISION

by Joseph Brady, Director of Business Development and AWS and Cloud Alliance Leader at Treehouse Software, Inc.

tcVISION from Treehouse Software allows enterprise customers to replicate data between mainframe, Cloud, or Hybrid Cloud while maintaining their legacy environments, and one of the more popular targets for mainframe modernization that we have been seeing is Apache Kafka®.

tcVISION_Mainframe_To_Kafka

What is Kafka? 

Kafka is an open-source distributed event streaming platform used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications. A data pipeline processes and moves data from one system to another, and a streaming application is an application that consumes streams of data.

Kafka is reliable, stable, flexible, robust, and scales well with numerous consumers, working seamlessly with most popular data warehouses and data lakes like Hadoop, Redshift, S3, BigQuery, Azure, etc. Kafka can also be used for real-time analytics, as well as to process real-time streams to collect Big Data.

See how tcVISION easily connects mainframe systems to Kafka…

Kafka handles massive volumes of data and remains responsive, making Kafka a preferred platform when the volume of the data at the mainframe level –> BIG.

Kafka is a supported target in tcVISION, and in this instructional video, tcVISION is shown synchronizing data in real-time from Db2 on z/OS via Kafka to a Big Data environment:

Additional Reading: Treehouse Software is a Confluent technology partner and we recently co-authored a blog entitled, “Enterprise Mainframe Change Data Capture (CDC) to Apache Kafka with tcVISION and Confluent”.


__tsi_logo_400x200

Contact Treehouse Software Today…

No matter where you want your mainframe data to go – the Cloud, Open Systems, or any LUW target – tcVISION from Treehouse Software is your answer.

Just fill out the Treehouse Software Product Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.