tcVISION Mainframe Data Replication Solution is Featured in the Microsoft Azure Architecture Center

tcVISION is a data replication solution that provides an IBM mainframe integration solution for mainframe data replication, data synchronization, data migration, and change data capture (CDC) to multiple Azure data platform services.

____Azure_Architecture_Diagram

____Button_READ_MORE


__tsi_logo_400x200

Contact Treehouse Software Today…

Treehouse Software is the worldwide distributor of tcVISION, a software product that allows immediate data replication between many Mainframe sources and Cloud and Open Systems targets, enabling government, healthcare, supply chain, financial, and a variety of public service organizations meet spikes in demand for vital information. No matter where you want your mainframe data to go – the Cloud, Open Systems, or any LUW target, tcVISION from Treehouse Software is your answer.

Just fill out the Treehouse Software Product Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.

Providing a High Availability Framework for Mainframe-to-AWS Data Replication

by Dan Vimont, Cloud Solutions Architect at Treehouse Software, Inc.

tcV_HA_on_AWS

Treehouse Software customers are using tcVISION to enable mission-critical mainframe-to-AWS data replication pipelines.  Some of these production pipelines are providing vital near-real-time synchronization between source and target, and thus can’t afford any significant downtime in the event of failure.  So it’s only natural that a number of our customers have been asking for advice in setting up a high availability configuration for their tcVISION components that run on AWS EC2 instances.  The High Availability Framework discussed here provides for a Failover EC2 instance to automatically pick up tcVISION processing should the Primary instance (running in another Availability Zone) go down.

The Core Components:  Primary Instance & Failover Instance

The core components of a tcVISION high availability framework consist of two EC2 instances running in different Availability Zones:  a Primary EC2 instance and a Failover EC2 instance.  Both identically-configured EC2 instances are attached to a shared working-storage file system (either an EFS or FSx volume), which allows the Failover instance to seamlessly and quickly pick up tcVISION processing should the Primary instance suddenly become unavailable.

HA1

Use a Step Function to Automate the Failover Process

In the event of failure of the Primary instance, the recommended framework calls for automatic triggering of a Step Function for reliable failover processing, with steps that include the following:

  • verify that the Primary instance is unavailable (The tcVISION service cannot be active on both instances simultaneously, so this verification is vital.)
  • redirect all network traffic from the Primary instance to the Failover instance (via Route 53)
  • start tcVISION processing on the Failover instance

HA2

When Ready, Use a Step Function to Automate the Restoration Process

After operations personnel have completed recovery of the Primary EC2 instance, another Step Function may be manually triggered to reliably transfer tcVISION processing back to the Primary instance.

HA3.jp

Many More Details are Available Upon Request to Treehouse Customers

Full details regarding our recommended High Availability Framework for tcVISION are available upon request to Treehouse customers.  AWS services utilized in the complete recommended framework include Step Functions, Lambda Functions, EventBridge rules, CloudWatch alarms, SNS topics, a Route 53 Private Hosted Zone, and more.  The following diagram is a partial visual inventory of the recommended framework components.

HA5

Interested in seeing a live, online demo of tcVISION?

Just fill out the Treehouse Software tcVISION Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.


__001_TSI_LOGO

How to Synchronize Data in Real Time Between the Mainframe and AWS with Treehouse Software’s Enterprise CDC Tool

by Joseph Brady, Director of Business Development and Cloud Alliance Leader at Treehouse Software, Inc.

Bidirectional_Data_Replication

Many mainframe integration scenarios require continuous near-real-time replication of relational data to keep a copy of the data synched in the Cloud. Change Data Capture (CDC) is used for this near-real-time transactional replication by capturing change log activity to drive changes in the target dataset.

Just what is CDC anyway?

Simply put, and in relation to Mainframe-to-Cloud and open systems data replication, CDC is the use of processes to identify when data has been changed in a source system, so the replicated upstream or downstream (depending on how you look at it) target can be kept in sync with the changes.

In a recent AWS Architecture Blog, readers learn about integration using mainframe data to build Cloud native services with AWS, including transactional replication-based integration via CDC.

____AWS_Mainframe_CDC_Diagram

As mentioned in the blog, AWS Partner CDC Tools are available for connecting data center mainframes to the various data targets, and Treehouse Software’s tcVISION is one of those tools available in the AWS Marketplace.

tcVISION allows changes occurring in any mainframe application data to be tracked and captured, and then published to a variety of target AWS databases and applications. tcVISION provides an easy and fast approach for Hybrid Cloud projects, enabling real-time and bi-directional data replication between the hardware and AWS.

Example of Db2-to-AWS CDC using tcVISION Mainframe Manager:

tcVISION_Db2_To_AWS_CDC

tcVISION supports several CDC methods available, depending on each customer’s use case:

Bulk Transfer

  • Efficient transfer of entire databases
  • Analysis for data consistency (verification)
  • Initial load (ETL) and periodic mass data transfer
  • One-step data transfer

Log Processing

  • Transfer of changed data near-realtime or scheduled time frame
  • Reads both active logs and archived logs

Batch Compare

  • Comparison of data snapshots using checksums
  • Efficient transfer of changed data since last processing
  • Flexible processing options (SORT etc.)
  • Automatic creation of deltas by tcVISION

DBMS Extension

  • Real-time capture of changed data directly from the DBMS
  • Secure data storage even across DBMS restart
  • Flexible propagation methods

Interested in seeing a live, online demo of tcVISION CDC?

Just fill out the Treehouse Software tcVISION Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.


__001_TSI_LOGO

Treehouse Software Customer Case Study: A State Government Agency’s Real-time Data Synchronization Between IBM Mainframe Adabas and AWS

by Joseph Brady, Director of Business Development and Cloud Alliance Leader at Treehouse Software, Inc.

Mainframe_to_AWS_Graphic

Software AG’s Adabas is a mainframe database that is still heavily used by government sites throughout the U.S. and the world, and this blog focuses on a current Treehouse Software customer – a U.S. State Government Agency that uses Adabas on their mainframe system.

Business Issue

The Agency’s modernization team was looking for a Change Data Capture (CDC) technology solution that enables them to synchronize their mainframe Adabas data on AWS, particularly an Amazon RDS. As with most Treehouse customers, the State’s mainframe contains vital data that must always be highly available, so rather than attempting a complete migration from the mainframe, the modernization teams decided to implement a multi-year data replication plan. This allows the mainframe legacy teams to maintain existing critical applications, while the modernization team develops new applications on AWS.

After researching various technologies, the Agency discovered tcVISION on the AWS Parter Network Blog and contacted Treehouse Software to discuss their project and to see a demonstration of Mainframe-to-AWS data replication.

Addressing the Uniqueness of Adabas

Having specialized in tools and services complementary to Adabas/Natural applications since 1982, Treehouse Software has successfully encountered and addressed many unique scenarios within the Adabas environment. The Treehouse technical team documented three primary issues with Adabas/Natural that the Agency needed to consider when they began planning data replication on AWS:

  1. Adabas has no concept of “transaction isolation”, in that a program may read a record that another program has updated, in its updated state, even though the update has not been committed.  This means that programmatically reading a live Adabas database—one that is available to update users—will almost inevitably lead to erroneous extraction of data.  Record modifications (updates, inserts and deletes) that are extracted, and subsequently backed out, will be represented incorrectly—or not at all—in the target. Because of this, at Treehouse we say “the only safe data source is a static data source”—not the live database.
  2. Many legacy Adabas applications make use of “record typing”, i.e., multiple logical tables stored in a single Adabas file.  Often, each must be extracted to a separate table in the target RDBMS.  The classic example is that of the “code-lookup file”.  Most shops have a single file containing state codes, employee codes, product-type codes, etc.  Records belonging to a given “code table” may be distinguished by the presence of a value in a particular index (descriptor or superdescriptor in ADABAS parlance), or by a range of specific values.  Thus, the extraction process must be able to dynamically assign data content from a given record to different target tables depending on the data content itself.
  3. Adabas is most often used in conjunction with Software AG’s Natural 4GL, and “conveniently” provides for unique datatypes (“D” and “T”) that appear to be merely packed-decimal integers on the surface, but that represent date or date-time values when interpreted using Software AG’s proprietary Natural-oriented algorithm. The most appropriate way to migrate such datatypes is to recognize them and map them to the corresponding native RDBMS datatype (e.g., Oracle DATE) in conjunction with a transformation that decodes the Natural value and formats it to match the target datatype.

The tcVISION Technology Solution...

Adabas_To_AWS

After technical discussions and a successful proof of concept (POC) that proved out a set of use cases, all teams at the Agency determined that tcVISION real-time mainframe data replication capabilities were the perfect fit for meeting their goals.

tcVISION‘s modeling and mapping facilities are utilized to view and capture logical Adabas structures, as documented in Software AG’s PREDICT data dictionary, as well as physical structures as described in Adabas Field Definition Tables (FDTs).  Given that PREDICT is a “passive” data dictionary (there is no requirement that the logical and physical representations agree), it was necessary to scrutinize both to ensure that the source structures were accurately modeled.

Furthermore, tcVISION generates appropriate mappings and transformations for converting Adabas datatypes and structures to corresponding target datatypes and structures, including automatic handling of the proprietary “D” and “T” source datatypes.

The teams examined the three ways that tcVISION can access Adabas data:

  1. ETL – read the active database nucleus
  2. ETL – read datasets containing unloaded Adabas files created by the ADAULD utility
  3. CDC – read the active and archived PLOGs datasets

It was decided to access the data by reading the active and archived PLOGs datasets. The schema, mappings, and transformations from the metadata import were tailored to the customer’s specific requirements.  It is also now possible to import an existing RDBMS schema and retrofit it, via drag-and-drop in tcVISION, to the source Adabas elements.

Additionally, the Agency’s teams are very pleased with tcVISION‘s minimal usage of mainframe resources. The product’s “staged processing” methodology accomplishes this, whereby the only processing occurring on the mainframe is the capture of changes from Adabas PLOGs. The bulk of the processing occurs on the AWS side, minimizing tcVISION’s footprint on the mainframe as seen in this diagram:

tcVISION_Staged_Processing

The user defines on which platform stage their processing should be done. Do as little as possible on the mainframe: Stage 0 – capture data and send data (internal format) to target, and process data in Stages 1 – 3 in AWS.

Customer Outcome

All requirements were met by tcVISION, which led to a successful project implementation.


__001_TSI_LOGO
Contact Treehouse Software for a tcVISION Demo Today…

No matter where you want your mainframe data to go – the Cloud, open systems, or any LUW target – tcVISION from Treehouse Software is your answer.

Just fill out the Treehouse Software tcVISION Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.


Further reading:

Many more mainframe data migration and replication customer case studies can be read on the Treehouse Software Website.

How to Replicate Mainframe Data on Azure SQL with tcVISION from Treehouse Software

by Joseph Brady, Director of Business Development and Cloud Alliance Leader at Treehouse Software, Inc.

tcVISION allows enterprise customers to replicate data between mainframe, Cloud, or Hybrid Cloud while maintaining their legacy environments.

We are currently working with a government site to architect bi-directional mainframe data replication on Azure SQL.  One of the customer’s requirements is for tcVISION to provide real-time data synchronization of changes on either platform reflected on the other platform (e.g., a change to an Azure SQL table is reflected back on mainframe). This way, the customer can modernize their application on the Azure Cloud without disrupting the existing critical work on their legacy system.

tcVISION_Azure_Architecture

VIDEO: See how tcVISION easily connects mainframe systems to Azure SQL…

The tcVISION solution focuses on changed data capture (CDC) when transferring information between mainframe data sources and modern databases and applications. Through an innovative technology, changes occurring in any mainframe application data are tracked and captured, and then published to a variety of targets.

Azure SQL is a supported target in tcVISION, and in this instructional video, tcVISION is shown synchronizing data in real-time between Db2 on z/OS and Azure SQL:


__tsi_logo_400x200

Contact Treehouse Software Today…

No matter where you want your mainframe data to go – the Cloud, Open Systems, or any LUW target – tcVISION from Treehouse Software is your answer.

Just fill out the Treehouse Software Product Demonstration Request Form and a Treehouse representative will contact you to set up a time for your online tcVISION demonstration.